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Exercise !
Simple Linear Regression Model

Model: Wage = ω0 + ω1Education+ u

Data: UK workforce in $&!% (!$ individuals)

Individual ! $ % # ’ 6 ( 8 ” !& !! !$
Wage %.! %.$ % 6 ’.% 8.8 !! ’ %.6 !8 6.% 8.!
Education !! !$ !! 8 !$ !6 !8 !$ !$ !( !6 !%

Goal: Estimate ω0 and ω1 using OLS.
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Exercise !
OLS Estimators

For the general SLR model y = ω0 + ω1x+ u:

OLS Formulas

ω̂0 = ȳ → ω̂1x̄ and ω̂1 =

∑n
i=1(xi → x̄)(yi → ȳ)∑n

i=1(xi → x̄)2

where ȳ = 1
n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi
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Exercise !
Computing the Estimates

Step !: Compute sample means: ȳ = 6.78, x̄ = 13.17

Step ”: Compute the slope coef)cient

ω̂1 =

∑n
i=1(xi → x̄)(yi → ȳ)∑n

i=1(xi → x̄)2
=

99.43

95.67
= 1.04

Step #: Compute the intercept

ω̂0 = 6.78→ 1.04↑ 13.17 = →6.90

0

0 0



Exercise !
Interpretation

Estimated Model
⊋Wage = →6.90 + 1.04↑ Education

Interpretation:

• ω̂1 = 1.04: An additional year of education is associated with a £!.&# increase in hourly
wage.

• ω̂0 = →6.90: Predicted wage for zero years of education (extrapolation).
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Exercise !
Goodness-of-Fit: R2

R-Squared De)nition

R2 = SSE
SST = 1→ SSR

SST ↓ [0, 1]

Components:

• SST =
∑n

i=1(yi → ȳ)2 = 206.48 (Total Sum of Squares)

• SSR =
∑n

i=1 û
2
i = 103.13 (Residual Sum of Squares)

Result:
R2 = 1→ 103.13

206.48
= 0.50

Education explains ’&% of the variation in wages.
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Exercise !
Extending to Multiple Regression

Extended Model: Wage = ω0 + ω1Education+ ω2Expertise+ u

Why include more variables?

• MLR investigates the marginal effect of multiple factors

• Holds )xed other factors otherwise hidden in u

• Reduces omitted variable bias

Interpretation of ω̂j :

• Change in y due to a one-unit increase in xj , ceteris paribus
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Exercise $
Omitted Variable Bias

Model: Fertility = ω0 + ω1Education+ u

Question: What factors are in u? Are they correlated with Education?

Potential factors in u:

• Income

• Intelligence

• Age

• Leisure time

s s



Exercise $
Why OVB is a Problem

Correlation concerns:

• Income: Higher income ↔ easier to raise children; correlated with education

• Intelligence: Affects both education and fertility decisions

Key Insight

Given potential correlation between Education and factors in u, the ceteris paribus effect is
unlikely to be uncovered from this SLR model.

↗ Omitted Variable Bias (OVB) may arise!



Exercise %
The Model

Model: colgpa = ω0 + ω1 · hsperc+ ω2 · sat+ u

Variables: colgpa = College GPA; hsperc = HS percentile; sat = SAT score



Exercise %
OLS Estimates

Estimated Model
⊋colgpa = 1.392→ 0.013 · hsperc+ 0.0015 · sat

Interpretation:

• ω̂2 = 0.0015: A !-point increase in SAT raises GPA by &.&&!’



Exercise %
Part (a): Predicted GPA

Question: What is the predicted GPA when hsperc = 20 and sat = 1050?

Solution:

⊋colgpa = 1.392→ 0.013↑ 20 + 0.0015↑ 1050

= 1.392→ 0.26 + 1.575 = 2.707

Interpretation: A student in the top $&% with SAT = !&’& is expected to have a GPA of
about $.(.



Exercise %
Part (b): GPA Difference Between Students

Question: Students A and B have the same hsperc, but A’s SAT is $&& points lower.
Predicted GPA difference?

Solution: Use the difference equation:

!colgpa = ω̂1 ·!hsperc+ ω̂2 ·!sat

With !hsperc = 0 and !sat = →200:

!colgpa = →0.013↑ 0 + 0.0015↑ (→200) = →0.30

Interpretation: Student A’s GPA is expected to be &.%& lower.



Exercise %
Part (c): SAT Difference for GPA Gap

Question: Holding hsperc )xed, what SAT difference leads to a &.’& GPA difference?

Solution: Set !colgpa = 0.50 and !hsperc = 0:

0.50 = 0.0015 ·!sat ↗ !sat =
0.50

0.0015
= 333.33

Interpretation: A student needs a SAT score about %%% points higher to have a GPA &.’
points above a peer from the same percentile.



Exercise %
Part (d): Goodness-of-Fit

From STATA output: SSR = 1303.59, SST = 1794.20

Compute R2:
R2 = 1→ SSR

SST
= 1→ 1303.59

1794.20
= 0.27

Interpretation

Only $(% of variation in college GPA is explained by hsperc and SAT.

↗ Other relevant variables may be omitted from the model.
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Exercise #
CEO Salaries and Firm Performance

Dataset: ceosal1.txt ($&” observations, year !””&)

Variables:

• salary: CEO salary in thousands of dollars

• roe: Return on equity (average !”88-!””&)

• sales: Firm sales in millions of dollars

Models to estimate:

!. Simple: salary = ω0 + ω1 · roe+ u

$. Multiple: salary = ω0 + ω1 · roe+ ω2 · sales+ u



Exercise #
MATLAB Code (Part !: Load Data)

clear all

load ceosal1.txt

salary = ceosal1 (:,1);

sales = ceosal1 (:,3);

roe = ceosal1 (:,4);

n = 209;

y = salary;

% Histogram

histogram(salary)



Exercise #
MATLAB Code (Part ”: OLS Estimation)

% Simple Linear Regression (SLR)

X1 = [ones(n,1) roe];

betahat1 = inv(X1 ’*X1)*X1 ’*y; % OLS estimator

uhat1 = y - X1*betahat1; % Residuals

R2_1 = 1 - uhat1 ’* uhat1 /(var(y)*(n-1)); % R-squared

% Multiple Linear Regression (MLR)

X2 = [ones(n,1) roe sales ];

betahat2 = inv(X2 ’*X2)*X2 ’*y; % OLS estimator

uhat2 = y - X2*betahat2; % Residuals

R2_2 = 1 - uhat2 ’* uhat2 /(var(y)*(n-1)); % R-squared



Exercise #
Key Formulas in Matrix Form

OLS Estimator

ω̂ = (X ↑X)↓1X ↑y

Residuals

û = y →Xω̂

R-Squared

R2 = 1→ û↑û
(n↓1)·Var(y) = 1→ SSR

SST



Exercise #
The Design Matrix

SLR: X1 =





1 roe1

1 roe2
...

...
1 roen




MLR: X2 =





1 roe1 sales1

1 roe2 sales2
...

...
...

1 roen salesn





The column of ones captures the constant term ω0.



Exercise ’
CEO Salaries with Sales and Pro#ts

Dataset: ceosal2.txt (!(( observations, year !””&)

Variables:

• salary: CEO compensation in thousands of dollars

• sales: Firm sales in millions of dollars

• profits: Firm pro)ts in millions of dollars

Model: salary = ω0 + ω1 · sales+ ω2 · profits+ u



Exercise ’
MATLAB Code

clear all

load ceosal2.txt

salary = ceosal2 (:,1);

sales = ceosal2 (:,7);

profits = ceosal2 (:,8);

n = 177;

X = [ones(n,1) sales profits ];

K = size(X,2); % Number of regressors (including constant)

y = salary;

histogram(salary) % Check distribution

% OLS Estimation

betahat = inv(X’*X)*X’*y; % OLS estimator

uhat = salary - X*betahat; % Residuals

R2 = 1 - uhat ’*uhat/(var(y)*(n-1)); % R-squared



Exercise ’
Tasks

!. Histograms: Visualize distributions of salary, sales, pro)ts
Check for skewness, outliers

$. Beta estimates: (X ↑X)↓1X ↑y

ω̂0: Baseline salary
ω̂1: Effect of sales on salary
ω̂2: Effect of pro)ts on salary

%. R2: Goodness-of-)t



Exercise 6
Proving OLS is Unbiased via Simulation

Goal: Use Monte Carlo simulation to show E[ω̂] = ω

Approach:

!. Use ω̂ from Exercise ’ as the “true” ω

$. Generate many simulated datasets with known ω

%. Estimate ω̂ for each simulation

#. Compare average ω̂ to the true ω

Data Generating Process:

ysim = Xω + ε, ε ↘ N(0,ϑ2In)



Exercise 6
MATLAB Code

% Monte Carlo Simulation

nobs = 10000; % Number of simulations

betasim = zeros(nobs , K);

mu = 0;

sigma = 1;

for i = 1:nobs

e = mu + sigma * randn(n, 1); % Random errors

ysim = X * betahat + e; % Simulated y

betasim(i,:) = inv(X’*X) * X’ * ysim; % OLS estimate

end

% Compare average estimates to true values

[mean(betasim)’ betahat]



Exercise 6
Interpreting the Results

Output comparison:

Parameter ω̂sim ωtrue

ω0 ≃ ω̂0 ω̂0

ω1 ≃ ω̂1 ω̂1

ω2 ≃ ω̂2 ω̂2

Conclusion

The average of OLS estimates across simulations converges to the true values. This
con)rms OLS is unbiased.
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Summary
Part ! - Theory:

• Ex !: OLS estimation, R2, SLR vs MLR

• Ex ”: Omitted Variable Bias

• Ex #: Prediction with MLR

Part ” - Practice:

• Ex $: CEO salaries with ROE and sales

• Ex %: CEO salaries with sales and pro)ts

• Ex 6: Monte Carlo simulation

Key: OLS: ω̂ = (X ↑X)↓1X ↑y; R2 measures goodness-of-)t



Key Formulas

OLS Estimator

ω̂1 =
Cov(x,y)
Var(x) or ω̂ = (X ↑X)↓1X ↑y

Goodness-of-Fit

R2 = 1→ SSR
SST = SSE

SST

Prediction

ŷ = Xω̂ = ω̂0 + ω̂1x1 + ω̂2x2 + · · ·


