Seminar 3 Solutions

Giulio Rossetti* giuliorossetti94.github.io January 31, 2025

* email: giulio.rossetti.1@wbs.ac.uk

Exercise 4: Work vs. Sleep

Disclaimer

Full solutions are available on my.wbs. All exercises are examinable material, not just the ones we covered in the seminars.

Exercise 1

Exercise 2

Exercise 3

Exercise 1: Omitted Variable Bias

Model: est

 $\log(wage) = \beta_0 + \beta_1 female + \beta_2 train + \beta_3 educ + \beta_4 exper + u$

If less able workers are more likely to be selected and ability is omitted:

True model: pop.

 $\log(wage) = \beta_0 + \beta_1 female + \beta_2 \underline{train} + \beta_3 educ + \beta_4 exper + \frac{\beta_5 ability + \epsilon}{\xi}$ $E[U; [x_i] = O$

• therefore
$$u = \beta_5 ability + \epsilon$$

• What can we say about the bias in the OLS estimate of β_2 ?

$$\beta_5 > 0$$
 $Corr(x_2, x_5) > 0$ $Corr(x_2, x_5) < 0$ $\beta_5 > 0$ Positive BiasNegative Bias $\beta_5 < 0$ Negative BiasPositive Bias

Exercise 1: Omitted Variable Bias

- Higher worker ability leads to Higher wages: $\beta_5 > 0$.
- Auxiliary model:

$$ability = \delta_0 + \delta_1 train + v$$

- Estimate likely to be $\tilde{\delta}_1 < 0$. i.e. *train* and *ability* are negatively correlated (Less able workers are more likely to be selected for training).
- training). • Bias in OLS estimate: $\tilde{\beta}_{2} = \hat{\beta}_{2} + \hat{\beta}_{5}\tilde{\delta}_{1} < \hat{\beta}_{2}.$ $\beta => population$ $\hat{\beta} => estimate of$ true model $\hat{\beta} => estimate of$ Conitted veriable
- Bias: $\beta_5 > 0$, Cov(train, ability) < 0 implies Negative Bias on β_2
- Conclusion: Negative bias in β_2 , but the magnitude cannot be exactly quantified.

Collinearity and Interaction Terms

 $\log(wage) = \beta_0 + \beta_1 female + \beta_2 train + \beta_3 educ + \beta_4 exper + u$

- Dummy variables and perfect collinearity:
 - By definition, male = 1 female.
 - Including both male and female causes perfect collinearity.
 - If there are N dummy variables, include only N 1 to avoid collinearity.
 - Alternative: exclude the intercept term β_0 .
- Interaction term for gender and training program:
 - To test if training effects differ by gender, modify the model:

 $\log(wage) = \beta_0 + \beta_1 female + \beta_2 train + \beta_3 educ + \beta_4 exper + \beta_5 female \times trained + \beta_5 female \times trained + \beta_5 female + \beta_6 female$

This allows different slopes for train by gender.

Exercise 1

Exercise 2

Exercise 3

Exercise 2: Randomized Experiment

- Scholarship *randomly assigned*, independent of other factors.
- OLS is unbiased as long as assumptions hold.
 - No change in OLS mechanics or statistical theory.
 - Interpretation of the coefficient differs.
 - With a single regressor, OLS provides an unbiased estimate as long as SLR.1 through SLR.4 hold. $E[3,7] = B_1$

OLS and Dummy Variables

score = Bo + Br scholandrip + 4 corr(schol, 10) score = Bo + Br scholandrip + BlQ + E

• Should we add additional controls? Do we have an OVB?

OVB => MARA is used satisfied $<math>E[CPi|X_i] = O$ COVP(CPi, Xi) = O

OLS and Dummy Variables

- Should we add additional controls? Do we have an OVB?
- MLR4 Zero Conditional Mean Assumption:

$$\mathbb{E}[u_i \mid x_i] = 0 \tag{1}$$

$$\mathbb{E}[u_i \mid scholarship] = 0 \tag{2}$$

- Is MLR4 satisfied? If not, we have an OVB. NO OVB
- OVB vs better model fit Schol is resubanly essigned Covr (scholi, ui) = 0

Exercise 1

Exercise 2

Exercise 3

Heteroskedasticity Consequences

$$MLG$$
 $Var(U|X) = \sigma^2 I_u$ constant
variance

Which of the following are consequences of heteroskedasticity?

- 1. The OLS estimator, $\hat{\beta}_j$, is biased. False var(ul_x) $\neq \sigma^2 I_n$
- 2. The OLS estimator is no longer BLUE. True
- 3. The usual t-statistic no longer has a t distribution.

Exercise 1

Exercise 2

Exercise 3

Exercise 4: Work vs. Sleep $\beta_4 = 0$ Model: $sleep = \beta_0 + \beta_1 totwrk + \beta_2 educ + \beta_3 age + \beta_4 male + ub_4 = 87.51$

sleep	Coef.	Std. Err.	t	P>[t]	[95% Conf.	Interval]
totwrk	1657914	.0179622	-9.23	0.000	2010576	1305253
educ	-11.75612	5.866382	-2.00	0.045	-23.27391	2383405
age	1.964277	1.442942	1.36	0.174	8687296	4.797283
male	87.99325	34.32329	2.56	0.011	20.6045	155.382
cons	3642.467	111.8443	32.57	0.000	3422.877	3862.056
_cons	3642.467	111.8443	32.57	0.000	3422.877	3862.056
እ.		5 13/1	=0	•	$t_1 =$	12a -
54	•		_		Bu	-4
					104	SCI

 $sleep = \beta_0 + \beta_1 to twrk + \beta_2 educ + \beta_3 age + \beta_4 male + \beta_5 male \times to twork + u$

Model:

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
totwrk	1438338	.026148	-5.50	0.000	1951717	0924959
educ	-11.78482	5.865035	-2.01	0.045	-23.29998	2696511
age	1.723503	1.457574	1.18	0.237	-1.138238	4.585244
male	174.457	82.333	2.12	0.034	12.80782	336.1062
male_totwrk	0419258	.0362901	-1.16	0.248	1131762	.0293246
_cons	3614.41	114.4244	31.59	0.000	3389.754	3839.066

Exercise 4: Work vs. Sleep

- Do men sleep more than women?
 - Male tend to sleep more than females $\hat{\beta}_4 = 87.99$, (p = 0.011)
 - At which confidence level can we reject the *null hypothesis* $H_0: \beta_4 = 0$?
- Trade-off between work and sleep:
 - Statistically significant tradeoff: $\hat{\beta}_1 = -0.166$
 - Strong significance: $t_{\hat{\beta}_1} = -9.23$, p < 0.001
 - Intuition: The more you work, the less you sleep.
- Being male and working hard:
 - No effect $(\hat{\beta}_5 = -0.042, t_{\hat{\beta}_5} = -1.16, p = 0.248).$
 - Hardworking men still tend to sleep more than females.
 - The interaction term does not significantly affect the impact of being male on sleep time.