Seminar 4 Solutions

Giulio Rossetti* giuliorossetti94.github.io February 6, 2025

* email: giulio.rossetti.1@wbs.ac.uk

Disclaimer

Full solutions are available on my.wbs. All exercises are examinable material, not just the ones we covered in the seminars.

TS vs CS

Roadmap

Exercise 1

Exercise 2

Exercise 3

Exercise 4

Exercise 1 (Part 1)

Q: As for cross sections, can we assume that time-series observations are independent of each other?

Q: As for cross sections, can we assume that time-series observations are independent of each other?

- NO. In a time series setting, the temporal ordering of observations matters.
- Cannot safely assume they are independent, because a typical feature of time series is serial correlation/dependence.
- In a time-series context, the randomness does not come from sampling from a population (as in cross sections), but rather from observing one realization of a stochastic process through time.

Exercise 1 (Part 2)

Q: How would you estimate a multiple linear regression model in a time-series setting?

Exercise 1 (Part 2)

Q: How would you estimate a multiple linear regression model in a time-series setting?

model

$$y_t = \beta_0 + \beta_1 x_{t1} + \beta_2 x_{t2} + \dots + \beta_k x_{tk} + u_t$$

- In matrix form: $y = X\beta + u$.
- The Ordinary Least Squares (OLS) estimator $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_k)'$ minimizes the sum of squared residuals:

$$\hat{\beta} = \arg\min_{\beta} (y - X\beta)'(y - X\beta) = \arg\min_{\beta} \mathbf{u'u}.$$

• Equivalently, we look for $\hat{\beta}$ that minimizes $S(\beta)$ (the sum of squared errors).

Q: What assumptions do you need to obtain <u>unbiasedness</u> of the OLS estimator in a time-series setting?

Q: What assumptions do you need to obtain unbiasedness of the OLS estimator in a time-series setting?

- Finite-sample properties of OLS under classical assumptions:
 - **TS-1**: Linear in parameters.
 - **TS-2**: No perfect collinearity among regressors.
 - **TS-3**: Zero conditional mean, $E[u_t | X] = 0$.
- Under these assumptions, $\hat{\beta}$ is an unbiased estimator of β .

Exercise 1 (Part 4)

Q: Is the zero conditional mean assumption more restrictive in a time-series setting than in a cross-sectional setting?

Exercise 1 (Part 4)

Q: Is the zero conditional mean assumption more restrictive in a time-series setting than in a cross-sectional setting?

- YES. Strict exogeneity (TS.3) is often questionable because it rules out any feedback from the dependent variable on future values of the explanatory variables.
- Exogeneity: $E[u_t | x_t] = 0$, i.e., the error is uncorrelated with regressors at the same period.

$$r_t = \beta_0 + \beta_1 \operatorname{MKT}_t + u_t$$

- TS.3 implies $E[u_t | \text{MKT}_{t-j}] = 0$, but this may be violated (e.g., MKT_{t-1} could be correlated with u_t).
- In reality, MKT might be pro-cyclical or correlated with consumption, leading to endogeneity.

Exercise 1 (Part 5)

Q: What assumptions are needed for the OLS estimator to be BLUE, and what do we need for valid F- and t-tests?

Exercise 1 (Part 5)

Q: What assumptions are needed for the OLS estimator to be BLUE, and what do we need for valid F- and t-tests?

• For efficiency (BLUE), in addition to TS.1–TS.3, we also need:

TS.4 Homoskedasticity: $Var(u_t \mid X) = \sigma^2$.

TS.5 No serial correlation: $Corr(u_t, u_s) = 0$ for $t \neq s$.

- Under TS.1–TS.5, OLS is BLUE (Best Linear Unbiased Estimator).
- For valid F- and t-tests, we also assume:

TS.6 Normality: $u_t \sim N(0, \sigma^2)$, independent of X.

• Then $\hat{\beta}$ has a normal sampling distribution, and the usual F- and t-tests are valid.

Roadmap

Exercise 1

Exercise 2

Exercise 3

Exercise 4

Exercise 2 (Part 1)

model

 $\pi_t = \beta_0 + \beta_1 \operatorname{Unemp}_t + \beta_2 \operatorname{Unemp}_{t-1} + \beta_3 \operatorname{Unemp}_{t-2} + \beta_4 \operatorname{Unemp}_{t-3} + u_t$

Exercise 2 (Part 1)

model

 $\pi_t = \beta_0 + \beta_1 \operatorname{Unemp}_t + \beta_2 \operatorname{Unemp}_{t-1} + \beta_3 \operatorname{Unemp}_{t-2} + \beta_4 \operatorname{Unemp}_{t-3} + u_t$

- The transitory effect from one year ago (i.e., 4 quarters ago) is measured by β₄.
- The transitory effect of a current change in unemployment is given by β₁.
- The persistent effect is measured by the sum of the lag coefficients:

 $\beta_1 + \beta_2 + \beta_3 + \beta_4.$

Transitory increase in z_t

 $y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t$ (FDL of order two).

- Scenario: For t < 0, assume $z_t = c$. At time t = 0, z_0 increases to c + 1 just for that period, and then at t = 1, it reverts to c.
- Key equations (setting $u_t = 0$ for simplicity):

$$y_{-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c,$$

$$y_0 = \alpha_0 + \delta_0 (c+1) + \delta_1 c + \delta_2 c,$$

$$y_1 = \alpha_0 + \delta_0 c + \delta_1 (c+1) + \delta_2 c,$$

$$y_2 = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 (c+1),$$

$$y_3 = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c.$$

- Interpretation:
 - The *immediate* effect on y_0 (from y_{-1}) is δ_0 .
 - After one period, $y_1 y_{-1} = \delta_1$, etc.
 - By t = 3, y_3 has returned to its initial level, so the effect of the increase in z_0 is transitory.

Permanent increase in z_t

$$y_t = \alpha_0 + \delta_0 z_t + \delta_1 z_{t-1} + \delta_2 z_{t-2} + u_t.$$

- Scenario: Suppose now that at t = 0, z₀ increases from c to c + 1 and stays at c + 1 for all subsequent periods.
- Key equations (still setting $u_t = 0$):

$$y_{-1} = \alpha_0 + \delta_0 c + \delta_1 c + \delta_2 c,$$

$$y_0 = \alpha_0 + \delta_0 (c+1) + \delta_1 c + \delta_2 c,$$

$$y_1 = \alpha_0 + \delta_0 (c+1) + \delta_1 (c+1) + \delta_2 c,$$

$$y_2 = \alpha_0 + \delta_0 (c+1) + \delta_1 (c+1) + \delta_2 (c+1),$$

$$y_3 = \alpha_0 + \delta_0 (c+1) + \delta_1 (c+1) + \delta_2 (c+1), \dots$$

• Long-run effect:

For large $t, z_t = c + 1$. Thus y_t stabilizes at $\alpha_0 + (\delta_0 + \delta_1 + \delta_2)(c+1)$.

The cumulative impact of a permanent +1 in z is $\delta_0 + \delta_1 + \delta_2$.

Roadmap

Exercise 1

Exercise 2

Exercise 3

Exercise 4

Visual Representation of the Problem

• **Option 1:** Buy a 3-month T-bill at time t - 1, hold it to t.

Its yield, hy_{3t-1} , is known at t-1.

- **Option 2:** Buy a 6-month T-bill at time t 1, sell after 3 months (at t).
 - Its 3-month holding-period yield, $hy6_t$, is unknown at t 1.
- The Expectations Hypothesis suggests hy_{3t-1} and hy_{6t} should be the same on average.
- We test this by estimating:

$$hy6_t = \beta_0 + \beta_1 hy3_{t-1} + u_t$$

and checking if $\beta_1 = 1$.

Visual Representation

Figure: Visual representation of the problem

Estimation Results

Source	33	df		M3		Number of obs	-	123
Model Residual	84.9875173 13.1294786	1 121	84.9 .108	875178 505087		Prob > P R-squared	-	0.0000
Total	98.1169958	122	.804	237671		Adj R-squared Root MSE	=	0.8651
hy6	Coef.	5td. 1	Err.	t	P> t	[95% Conf.	In	terval]
hy3_1 _cons	1.104309	.0394	588 576	27.99	0.000			

Figure: Estimation results for the Expectations Hypothesis

• We test the null hypothesis $H_0: \beta_1 = 1$.

Q: How do we compute the t-statistic for hypothesis testing on a single parameter $\hat{\beta}_1$?

Q: How do we compute the t-statistic for hypothesis testing on a single parameter $\hat{\beta}_1$?

• We use the ratio of the estimated parameter minus its hypothesized value over the standard error:

$$t_{\hat{\beta}_1} = \frac{\hat{\beta}_1 - 1}{\operatorname{se}(\hat{\beta}_1)}.$$

• In this example:

$$\hat{\beta}_1 = 1.1043, \quad \operatorname{se}(\hat{\beta}_1) = 0.039 \implies t_{\hat{\beta}_1} = \frac{1.1043 - 1}{0.039} = 2.67.$$

• Interpretation : The larger $|t_{\hat{\beta}_1}|$ is, the more evidence we have that β_1 differs from 1.

Q: What is the two-sided rejection rule, and how do we apply it?

Q: What is the two-sided rejection rule, and how do we apply it?

• For a two-sided null hypothesis $H_0: \beta_1 = 1$, we reject H_0 in favor of $H_a: \beta_1 \neq 1$ if

$$\left|t_{\hat{\beta}_{1}}\right| > c,$$

where c is the critical value from a t-distribution with T - k - 1 degrees of freedom.

• At the 1% significance level, c = 2.62. Because our computed statistic $t_{\hat{\beta}_1} = 2.67$ is greater than 2.62, we reject H_0 and conclude $\beta_1 \neq 1$ at the 1% level.

Roadmap

Exercise 1

Exercise 2

Exercise 3

Exercise 4

model

 $\operatorname{Return}_{t} = \beta_0 + \beta_1 \operatorname{Return}_{t-1} + \beta_2 \operatorname{Return}_{t-1}^2 + u_t, \quad u_t \sim N(0, \sigma^2).$

Source	55	df	MS		Number of obs	= 689
Model Residual	19.2169743 3051.20702	2 9. 606 4	60848717		F(2, 686) Prob > F R-squared	= 2.16 = 0.1161 = 0.0063
Total	2070.42479	688 4.	46282673		Adj R-squared Root MSE	= 0.0034 = 2.109
resurn	Coef.	Sed. Er:		P>[6]	[95% Conf.	Interval]
return_1	.0485723	.0387224	1.25	0.210	0274562	.1246009
zet2	009735	.0070296	-1.38	0.167	023537	.004067
cons	.2255486	.087234	2.59	0.010	0542708	.3968263

Figure: Predictive Model for Stock Returns

$E[\operatorname{Return}_t | \operatorname{Return}_{t-1}] = E[\operatorname{Return}_t].$

 $E[\operatorname{Return}_t | \operatorname{Return}_{t-1}] = E[\operatorname{Return}_t].$

- Intuitively, if both β_1 and β_2 are zero, then $E[\operatorname{Return}_t | \operatorname{Return}_{t-1}]$ does not depend on $\operatorname{Return}_{t-1}$.
- So we set up the null hypothesis as $H_0: \beta_1 = \beta_2 = 0$.
- The F-statistic is about 2.16 with a p-value ≈ 0.116 .
- Conclusion: Since the p-value exceeds 0.10, we cannot reject H_0 at the 10% level.
- This suggests that Return_t does not significantly depend on past returns.

Q: Are weekly stock returns predictable?

- Predicting Return_t based on $\operatorname{Return}_{t-1}$ (and $\operatorname{Return}_{t-1}^2$) does not appear promising:
 - The F-statistic is borderline significant at the 10% level.
 - The model explains less than 1% of the variation in Return_t .
- Hence, there is little evidence that weekly stock returns are predictable using only past returns.