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Disclaimer

Full solutions are available on my.wbs. All exercises are examinable
material, not just the ones we covered in the seminars.
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Exercise 1 (Part 1)

Q: As for cross sections, can we assume that time-series observations
are independent of each other?

• NO. In a time series setting, the temporal ordering of observations
matters.

• Cannot safely assume they are independent, because a typical
feature of time series is serial correlation/dependence.

• In a time-series context, the randomness does not come from
sampling from a population (as in cross sections), but rather from
observing one realization of a stochastic process through time.
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Exercise 1 (Part 2)

Q: How would you estimate a multiple linear regression model in a
time-series setting?

model
yt = β0 + β1xt1 + β2xt2 + · · ·+ βkxtk + ut

• In matrix form: y = Xβ + u.

• The Ordinary Least Squares (OLS) estimator β̂ = (β̂0, . . . , β̂k)
′

minimizes the sum of squared residuals:

β̂ = argmin
β

(y −Xβ)′(y −Xβ) = argmin
β

u′u.

• Equivalently, we look for β̂ that minimizes S(β) (the sum of squared
errors).
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Exercise 1 (Part 3)

Q: What assumptions do you need to obtain unbiasedness of the OLS
estimator in a time-series setting?

• Finite-sample properties of OLS under classical assumptions:
TS-1: Linear in parameters.
TS-2: No perfect collinearity among regressors.
TS-3: Zero conditional mean, E[ut | X] = 0.

• Under these assumptions, β̂ is an unbiased estimator of β.



Exercise 1 (Part 3)

Q: What assumptions do you need to obtain unbiasedness of the OLS
estimator in a time-series setting?
• Finite-sample properties of OLS under classical assumptions:

TS-1: Linear in parameters.
TS-2: No perfect collinearity among regressors.
TS-3: Zero conditional mean, E[ut | X] = 0.

• Under these assumptions, β̂ is an unbiased estimator of β.



Exercise 1 (Part 4)

Q: Is the zero conditional mean assumption more restrictive in a
time-series setting than in a cross-sectional setting?

• YES. Strict exogeneity (TS.3) is often questionable because it rules
out any feedback from the dependent variable on future values of
the explanatory variables.

• Exogeneity: E[ut | xt] = 0, i.e., the error is uncorrelated with
regressors at the same period.

rt = β0 + β1MKTt + ut

• TS.3 implies E[ut | MKTt−j ] = 0, but this may be violated (e.g., MKTt−1 could be
correlated with ut).

• In reality, MKT might be pro-cyclical or correlated with consumption, leading to
endogeneity.
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Exercise 1 (Part 5)

Q: What assumptions are needed for the OLS estimator to be BLUE, and
what do we need for valid F- and t-tests?

• For efficiency (BLUE), in addition to TS.1–TS.3, we also need:
TS.4 Homoskedasticity: Var(ut | X) = σ2.

TS.5 No serial correlation: Corr(ut, us) = 0 for t ̸= s.

• Under TS.1–TS.5, OLS is BLUE (Best Linear Unbiased Estimator).
• For valid F- and t-tests, we also assume:

TS.6 Normality: ut ∼ N(0, σ2), independent of X .

• Then β̂ has a normal sampling distribution, and the usual F - and
t-tests are valid.
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Exercise 2 (Part 1)

model

πt = β0+β1Unempt+β2Unempt−1+β3Unempt−2+β4Unempt−3+ut

• The transitory effect from one year ago (i.e., 4 quarters ago) is
measured by β4.

• The transitory effect of a current change in unemployment is given
by β1.

• The persistent effect is measured by the sum of the lag coefficients:

β1 + β2 + β3 + β4.
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Interpretation of the coefficients in an FDL model

Transitory increase in zt

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut (FDL of order two).

• Scenario: For t < 0, assume zt = c. At time t = 0, z0 increases to
c+ 1 just for that period, and then at t = 1, it reverts to c.

• Key equations (setting ut = 0 for simplicity):

y−1 = α0 + δ0c+ δ1c+ δ2c,

y0 = α0 + δ0(c+ 1) + δ1c+ δ2c,

y1 = α0 + δ0c+ δ1(c+ 1) + δ2c,

y2 = α0 + δ0c+ δ1c+ δ2(c+ 1),

y3 = α0 + δ0c+ δ1c+ δ2c.



Interpretation of the coefficients in an FDL model

• Interpretation:
The immediate effect on y0 (from y−1) is δ0.
After one period, y1 − y−1 = δ1, etc.
By t = 3, y3 has returned to its initial level, so the effect of the increase
in z0 is transitory.



Interpretation of the coefficients in an FDL model

Permanent increase in zt

yt = α0 + δ0zt + δ1zt−1 + δ2zt−2 + ut.

• Scenario: Suppose now that at t = 0, z0 increases from c to c+1 and
stays at c+ 1 for all subsequent periods.

• Key equations (still setting ut = 0):

y−1 = α0 + δ0c+ δ1c+ δ2c,

y0 = α0 + δ0(c+ 1) + δ1c+ δ2c,

y1 = α0 + δ0(c+ 1) + δ1(c+ 1) + δ2c,

y2 = α0 + δ0(c+ 1) + δ1(c+ 1) + δ2(c+ 1),

y3 = α0 + δ0(c+ 1) + δ1(c+ 1) + δ2(c+ 1), . . .



Interpretation of the coefficients in an FDL model

• Long-run effect:
For large t, zt = c+ 1. Thus yt stabilizes at α0 + (δ0 + δ1 + δ2)(c+ 1).
The cumulative impact of a permanent +1 in z is δ0 + δ1 + δ2.
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Visual Representation of the Problem

• Option 1: Buy a 3-month T-bill at time t− 1, hold it to t.
Its yield, hy3t−1, is known at t− 1.

• Option 2: Buy a 6-month T-bill at time t− 1, sell after 3 months (at t).
Its 3-month holding-period yield, hy6t, is unknown at t− 1.

• The Expectations Hypothesis suggests hy3t−1 and hy6t should be
the same on average.

• We test this by estimating:

hy6t = β0 + β1 hy3t−1 + ut

and checking if β1 = 1.



Visual Representation

time

t− 1 t t+ 1

• 3-month T-bill

hy3t−1 known at t− 1

• 6-month T-bill

hy6t unknown at t− 1

Figure: Visual representation of the problem



Estimation Results

Figure: Estimation results for the Expectations Hypothesis

• We test the null hypothesis H0 : β1 = 1.



Exercise 3

Q: How do we compute the t-statistic for hypothesis testing on a single
parameter β̂1?

• We use the ratio of the estimated parameter minus its hypothesized
value over the standard error:

tβ̂1
=

β̂1 − 1

se
(
β̂1
) .

• In this example:

β̂1 = 1.1043, se
(
β̂1
)
= 0.039 =⇒ tβ̂1

=
1.1043− 1

0.039
= 2.67.

• Interpretation : The larger |tβ̂1
| is, the more evidence we have that

β1 differs from 1.
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Exercise 3

Q: What is the two-sided rejection rule, and how do we apply it?

• For a two-sided null hypothesis H0 : β1 = 1, we reject H0 in favor of
Ha : β1 ̸= 1 if ∣∣tβ̂1

∣∣ > c,

where c is the critical value from a t-distribution with T − k − 1

degrees of freedom.

• At the 1% significance level, c = 2.62. Because our computed
statistic tβ̂1

= 2.67 is greater than 2.62, we reject H0 and conclude
β1 ̸= 1 at the 1% level.
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Exercise 4

model

Returnt = β0 + β1Returnt−1 + β2Return
2
t−1 + ut, ut ∼ N(0, σ2).

Figure: Predictive Model for Stock Returns



Exercise 4

E[Returnt | Returnt−1] = E[Returnt].

• Intuitively, if both β1 and β2 are zero, then E[Returnt | Returnt−1]

does not depend on Returnt−1.

• So we set up the null hypothesis as H0 : β1 = β2 = 0.

• The F-statistic is about 2.16 with a p-value ≈ 0.116.

• Conclusion: Since the p-value exceeds 0.10, we cannot reject H0 at
the 10% level.

• This suggests that Returnt does not significantly depend on past
returns.
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Exercise 4

Q: Are weekly stock returns predictable?
• Predicting Returnt based on Returnt−1 (and Return2t−1) does not

appear promising:
The F-statistic is borderline significant at the 10% level.
The model explains less than 1% of the variation in Returnt.

• Hence, there is little evidence that weekly stock returns are
predictable using only past returns.
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