Seminar 5 Solutions

Giulio Rossetti* giuliorossetti94.github.io February 13, 2025

* email: giulio.rossetti.1@wbs.ac.uk

Disclaimer

Full solutions are available on my.wbs. All exercises are examinable material, not just the ones we covered in the seminars.

Exercise 1

Exercise 3

Exercise 4

Q: The OLS estimator in a time-series setting is **unbiased** under the first three Gauss-Markov assumptions.

Q: The OLS estimator in a time-series setting is **unbiased** under the first three Gauss-Markov assumptions.

- 1. TS.1: Linearity in parameters
- 2. TS.2: No perfect collinearity
- 3. TS.3: Strict exogeneity/ Zero conditional mean

When we add the following two assumptions, the OLS estimator is also **BLUE**.

- 4. TS.4: Homoskedasticity
- 5. TS.5: No serial correlation

Q: A trending variable cannot be used as a dependent variable in the multiple linear regression model.

Q: A trending variable cannot be used as a dependent variable in the multiple linear regression model.

- Trending variables *can* be used as dependent variables in a linear regression model.
- However, be cautious when interpreting the results:
 - **spurious relationship** between y_t and trending explanatory variables.
- Including a time trend in the regression is advisable when dependent and/or independent variables are trending.
- The usual R^2 measure can be misleading when the dependent variable is trending.

Q: Seasonality is not an issue when using annual time-series observations.

Q: Seasonality is not an issue when using annual time-series observations.

• Each period represents a year and this is not associated with any season.

Exercise 1

Exercise 3

Exercise 4

Weakly Stationary Process: Correlation

Let $\{x_t : t = 1, 2, ..., T\}$ be a weakly stationary process.

Define $\gamma_h = \operatorname{Cov}(x_t, x_{t+h})$ for $h \ge 0$. Then $\gamma_0 = \operatorname{Var}(x_t)$. Show that

$$\operatorname{Corr}(x_t, x_{t+h}) = \frac{\gamma_h}{\gamma_0}$$

Weak (or covariance) Stationarity

A stochastic process $\{x_t : t = 1, 2, ...\}$ is said to be weakly stationary if:

$$\mathbb{E}(x_t) = \mu$$
, $\operatorname{Var}(x_t) = \sigma^2$, $\operatorname{Cov}(x_t, x_{t+h}) = f(h)$.

A weakly stationary process is uniquely determined by its mean, variance, and autocovariance function.

Derivation:

Exercise 1

Exercise 3

Exercise 4

Suppose that a time-series process $\{x_t : t = 1, 2, ..., T\}$ is given by

$$x_t = z + \epsilon_t,$$

for all t = 1, 2, ..., T, where ϵ_t is an i.i.d. sequence with mean zero and variance σ_{ϵ}^2 . The random variable z is constant over time, and it has mean zero and variance σ_z^2 . Furthermore, assume that ϵ_t is uncorrelated with z.

Q: Find the expected value and variance of x_t . Do your answers depend on t?

Q: Find $Cov(x_t, x_{t+h})$ for any t and h. Is x_t a weakly stationary process?

Q: Show that $\operatorname{Corr}(x_t, x_{t+h}) = \frac{\sigma_z^2}{\sigma_z^2 + \sigma_\epsilon^2}$ for any t and h.

Exercise 1

Exercise 3

Exercise 4

model

 $\operatorname{Return}_{t} = \beta_0 + \beta_1 \operatorname{Return}_{t-1} + u_t, \quad u_t \sim N(0, \sigma^2).$

Source	33	df	MS		Number of obs F(1, 687)	=	689 2.40
Model Residual	10.6866231 3059.73817	1 687	10.6866231 4.45376735		Prob > F R-squared	=	0.1218
Total	3070 42479	688	4 46282673		Adj R-squared Root MSE	=	2.1104
10041							
return	Coef.	Std. E	irr. t	₽> t	[95% Conf.	Int	erval]

Figure: Predictive Model for Stock Returns

Q: Compute the uncoditional mean and variance of the returns.

- AR(1) model: Return_t = $\beta_0 + \beta_1 \operatorname{Return}_{t-1} + u_t$.
- uncoditional mean: $\mathbb{E}(\operatorname{Return}_t) = \frac{\beta_0}{1-\beta_1}$.
- uncoditional variance: $\operatorname{Var}(\operatorname{Return}_t) = \frac{\sigma^2}{1-\beta_1^2}$.
- use $\hat{\sigma}^2$ as an estimator of σ^2

$$\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{T-k-1}$$