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Disclaimer

Full solutions are available on my.wbs. All exercises are examinable
material, not just the ones we covered in the seminars.



Roadmap

Exercise 1

Exercise 4



Part 1: Theory

Exercise 1
For T = 2, consider the standard panel data model:

yit = x′itβ + αi + uit, t = 1, 2, i = 1, . . . , n

where i denotes the cross-sectional unit and t denotes the time
dimension. For simplicity, assume that in this model there is no
intercept.



First-Difference Estimator

Show that the fixed-effects(FE) and first-difference (FD) estimators are
identical (they deliver the same beta estimates.)

• FD: Remove unobs heterogeneity by differencing over time:

yi2 − yi1 = (xi2 − xi1)
′β + (ui2 − ui1)

∆yi = ∆x′iβ +∆ui.

• Assuming independence of the error terms, βFD :

β̂FD =

(
n∑

i=1

∆xi∆x′i

)−1 n∑
i=1

∆xi∆yi.



Fixed-Effects Estimator

• FE : Remove unobs heterogeneity by demeaning:

ȳi =
1

2
(yi1 + yi2), x̄i =

1

2
(xi1 + xi2), ūi =

1

2
(ui1 + ui2).

• Then, we have:

yit − ȳi = (xit − x̄i)
′β + uit − ūi, t = 1, 2.

• βFE :

β̂FE =

(
n∑

i=1

2∑
t=1

(xit − x̄i)(xit − x̄i)
′

)−1 n∑
i=1

2∑
t=1

(xit − x̄i)(yit − ȳi).



Equivalence of FE and FD

Note that:

2∑
t=1

(xit − x̄i)(xit − x̄i)
′ =

2∑
t=1

(
xit −

xi1 + xi2
2

)(
xit −

xi1 + xi2
2

)′

=

(
xi1 − xi2

2

)(
xi1 − xi2

2

)′
+

(
xi2 − xi1

2

)(
xi2 − xi1

2

)′

=
1

2
∆xi∆x′i.



Equivalence of FE and FD

Similarly:
2∑

t=1

(xit − x̄i)(yit − ȳi) =
1

2
∆xi∆yi.

Substituting into the FE estimator, we obtain:

β̂FE =

(
1

2

n∑
i=1

∆xi∆x′i

)−1(
1

2

n∑
i=1

∆xi∆yi

)
.

=

(
n∑

i=1

∆xi∆x′i

)−1 n∑
i=1

∆xi∆yi = β̂FD.

Conclusion: The fixed-effects and first-difference estimators are
identical when T = 2.



Including age as a Regressor

Suppose that we include the variable age as an additional regressor and
use first differencing to estimate a fixed effects model.

• Requirements behind the FD estimator: ∆xit must have some
variation across i.

• This fails if an explanatory variable such as age is included.
age changes by the same amount for each of the individuals over time

yi1 = β1xi1 + β2xi2 + αi + ui1, t = 1, i = 1, . . . , n

yi2 = β1xi2 + β2xi2 + αi + ui2, t = 2, i = 1, . . . , n.



Differencing the Model

By subtracting the first equation from the second, we obtain:

∆yi = β1∆xi1 + β2∆xi2 +∆ui, i = 1, . . . , n.

Since xi2 increases by the same amount c across individuals:

∆yi = β1∆xi1 + β2c+∆ui.

= β1∆xi1 + δ +∆ui.

where δ = β2c is a constant term.



Interpretation

Key issue: The constant term δ makes it problematic to identify β2.

• δ does not represent the intercept (since there was no intercept in
the original model).

• It also does not represent any change in the intercept by definition:
Since we allow αi to be correlated with xi2, we cannot separate the
effect of αi on yi from the effect of any other variable that does not
change over time.



Implications of Cov(xit, αi) = 0

Suppose that Cov(xit, αi) = 0. What does this imply for the FE and FD
estimators?

• When we assume that Cov(xit, αi) = 0, the original model becomes
a random effects model.

• The random effects assumptions include all of the fixed effects
assumptions plus the additional requirement that αi is independent
of all explanatory variables in all time periods.

• WNote that given Cov(xit, αi) = 0, β can be consistently estimated
by Pooled OLS.



Composite Error Term

However, this ignores a key feature of the model. If we define the
composite error term as:

vit = αi + uit,

we can show that:

corr(vit, vis) =
σ2
α

σ2
α + σ2

u

, t ̸= s,

where:
σ2
α = Var(αi), σ2

u = Var(uit).



Implications for Estimation

• positive serial correlation in the error term makes pooled OLS
standard errors incorrect.

• We must:
Either correct the OLS SE, or
Use the GLS random effects estimator
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Exercise 4: Rental Prices and Student Presence

The data for the years 1980 and 1990 include rental prices and other
variables for college towns. The goal is to determine whether a stronger
presence of students affects rental rates. The model is:

log(rentit) = β0+δ0y90t+β1 log(popit)+β2 log(avgincit)+β3pctstuit+eit,

where:

• pop is city population,

• avginc is average income,

• pctstu is student population as a percentage of city population
(during the school year).



Pooled OLS Estimation Results

You estimate the model with pooled OLS and obtain the following
results:

Figure: Pooled OLS Estimation Results for Rental Prices and Student Presence



Interpreting the Regression Results

• Almost all regressors are statistically significant.
• City population is borderline significant.
• However, population per se is not a strong driving factor:

The number of inhabitants affects rents only if land size is limited.
This constraint is not explicitly considered in the model.

• There is a clear omitted variable bias:
City size is not constant and may depend on the city itself.
Example: London and Coventry do not have the same size.

• This leads to the so-called heterogeneous bias.
• To address this issue:

A fixed effects model can be used if regressors are correlated with
city-specific effects.
A random effects model can be used if regressors are uncorrelated
with city-specific effects.



Pooled OLS Estimation Results

Now you estimate the model with fixed effect and obtain the following
results:

Figure: FE Estimation Results for Rental Prices and Student Presence



Fixed Effects and Model Selection

• By fully acknowledging unobservable fixed effects, the impact of
lpop disappears.

• From the output, we see that:

corr(αi, xit) = −0.129,

which is relatively small.

• Given this small correlation, it might be sensible to use a random
effects model instead.

• However, determining the appropriate model is difficult without first
implementing a Hausman test.
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