Seminar 9 Solutions

Giulio Rossetti*

giuliorossetti94.github.io

March 13, 2025

^{*} email: giulio.rossetti.1@wbs.ac.uk

Disclaimer

Full solutions are available on my.wbs. All exercises are examinable material, not just the ones we covered in the seminars.

Roadmap

Exercise 1

Exercise 4

CS n individuals t=fixed TS n = fixed = 1 T periods PANEL DATA POOLED DA TA t=1 七=2 FIXED EFFECT RENDOW MODELS EFFECT MODELS i = London, Covertry Mcities pooled Ols Crime: = Bo + Be wempie + out leit pooled OLS => cov(Qi, unemp) #0 3 un tomeristent FEM, 1) First difference estimator -> remove on by first

2) Fixed effect estimator -> renoe di by denessing

(1) crimeie = 130 + By vuempie + ori + aie crine; 2 - crine = By (unemp; 2 - cremp; 1) + oli -di + (uiz - uia) Derime: - BI Domempi + Dui L= POCLED OLS 2 crimi = I Zariweit ovempi = I Zovempit

Ui = I Z uit Crime: = B1 (vnempie-vnempi)+

oxi - oxi +(uiz-ui)

L7 poored Ors COV (d:, u:z)=0 RANDOM EFFECT MODEL L. POCUES OLS

Cradjust SEs

Part 1: Theory

Exercise 1

For T=2, consider the standard panel data model:

$$y_{it} = x'_{it}\beta + \alpha_i + u_{it}, \quad t = 1, 2, \quad i = 1, \dots, n$$

where i denotes the cross-sectional unit and t denotes the time dimension. For simplicity, assume that in this model there is no intercept.

First-Difference Estimator

Show that the fixed-effects(**FE**) and first-difference (**FD**) estimators are identical (they deliver the same beta estimates.)

• **FD**: Remove unobs heterogeneity by differencing over time:

• Assuming independence of the error terms, β_{FD} :

$$\hat{\beta}_{FD} = \left(\sum_{i=1}^{n} \Delta x_i \Delta x_i'\right)^{-1} \sum_{i=1}^{n} \Delta x_i \Delta y_i.$$

Fixed-Effects Estimator

FE: Remove unobs heterogeneity by demeaning:

$$\bar{y}_i = \frac{1}{2}(y_{i1} + y_{i2}), \quad \bar{x}_i = \frac{1}{2}(x_{i1} + x_{i2}), \quad \bar{u}_i = \frac{1}{2}(u_{i1} + u_{i2}).$$

Then, we have:

$$y_{it} - \bar{y}_i = (x_{it} - \bar{x}_i)'\beta + u_{it} - \bar{u}_i, \quad t = 1, 2.$$

• β_{FE} :

$$\hat{\beta}_{FE} = \left(\sum_{i=1}^{n} \sum_{t=1}^{2} (x_{it} - \bar{x}_i)(x_{it} - \bar{x}_i)'\right)^{-1} \sum_{i=1}^{n} \sum_{t=1}^{2} (x_{it} - \bar{x}_i)(y_{it} - \bar{y}_i).$$

1/2 $\Delta \times \Delta \times \dot{\Delta} \times \dot{\Delta}$

Equivalence of FE and FD

Note that:

$$\sum_{t=1}^{2} (x_{it} - \bar{x}_i)(x_{it} - \bar{x}_i)' = \sum_{t=1}^{2} \left(x_{it} - \frac{x_{i1} + x_{i2}}{2} \right) \left(x_{it} - \frac{x_{i1} + x_{i2}}{2} \right)'$$

$$= \left(\frac{x_{i1} - x_{i2}}{2} \right) \left(\frac{x_{i1} - x_{i2}}{2} \right)' + \left(\frac{x_{i2} - x_{i1}}{2} \right) \left(\frac{x_{i2} - x_{i1}}{2} \right)'$$

$$= \boxed{\frac{1}{2} \Delta x_i \Delta x_i'}.$$

Equivalence of FE and FD

Similarly:

$$\sum_{t=1}^{2} (x_{it} - \bar{x}_i)(y_{it} - \bar{y}_i) = \frac{1}{2} \Delta x_i \Delta y_i.$$

Substituting into the FE estimator, we obtain:

$$\hat{\beta}_{FE} = \left(\frac{1}{2} \sum_{i=1}^{n} \Delta x_i \Delta x_i'\right)^{-1} \left(\frac{1}{2} \sum_{i=1}^{n} \Delta x_i \Delta y_i\right).$$

$$= \left(\sum_{i=1}^{n} \Delta x_i \Delta x_i'\right)^{-1} \sum_{i=1}^{n} \Delta x_i \Delta y_i = \hat{\beta}_{FD}.$$

Conclusion: The fixed-effects and first-difference estimators are identical when T=2.

Including age as a Regressor

$$t = 4$$
 $5 = 10 \text{ yrs}$ $i = 12 \text{ yrs}$ $k = 24 \text{ yrs}$ $t = 24 \text{ yrs}$ $t = 24 \text{ yrs}$ $t = 24 \text{ yrs}$

Suppose that we include the variable age as an additional regressor and use first differencing to estimate a fixed effects model.

- Requirements behind the FD estimator: Δx_{it} must have some variation across i.
- This fails if an explanatory variable such as age is included.
 - age changes by the same amount for each of the individuals over time

$$y_{i1} = \beta_1 x_{i1} + \beta_2 x_{i2} + \alpha_i + u_{i1}, \quad t = 1, \quad i = 1, \dots, n$$

 $y_{i2} = \beta_1 x_{i2} + \beta_2 x_{i2} + \alpha_i + u_{i2}, \quad t = 2, \quad i = 1, \dots, n.$

Differencing the Model

By subtracting the first equation from the second, we obtain:

$$\Delta y_i = \beta_1 \Delta x_{i1} + \beta_2 \Delta x_{i2} + \Delta u_i, \quad i = 1, \dots, n.$$

Since x_{i2} increases by the same amount c across individuals:

$$\Delta y_i = \beta_1 \Delta x_{i1} + \overline{\beta_2 c} + \Delta u_i.$$

$$= \beta_1 \Delta x_{i1} + \overline{\delta} + \Delta u_i.$$

where $\delta = \beta_2 c$ is a constant term.

Interpretation

Key issue: The constant term δ makes it problematic to identify β_2 .

- δ does not represent the intercept (since there was no intercept in the original model).
- It also does not represent any change in the intercept by definition:
 - Since we allow α_i to be correlated with x_{i2} , we cannot separate the effect of α_i on y_i from the effect of any other variable that does not change over time.

Implications of
$$Cov(x_{it}, \alpha_i) = 0$$
 RE mode

Suppose that $Cov(x_{it}, \alpha_i) = 0$. What does this imply for the FE and FD estimators?

- When we assume that $Cov(x_{it}, \alpha_i) = 0$, the original model becomes a random effects model.
- The random effects assumptions include all of the fixed effects assumptions plus the additional requirement that α_i is independent of all explanatory variables in all time periods.
- WNote that given $Cov(x_{it}, \alpha_i) = 0$, β can be consistently estimated by Pooled OLS.

Composite Error Term

However, this ignores a key feature of the model. If we define the composite error term as:

$$v_{it} = \alpha_i + u_{it},$$
 cov of composite e.t. over 1:ve

we can show that:

$$corr(v_{it}, v_{is}) = \sqrt{\frac{\sigma_{\alpha}^2}{\sigma_{\alpha}^2 + \sigma_{u}^2}}, \quad t \neq s,$$

where:

$$\sigma_{\alpha}^2 = \text{Var}(\alpha_i), \quad \sigma_u^2 = \text{Var}(u_{it}).$$

Implications for Estimation

REM J FEM Hacanam last

- positive serial correlation in the error term makes pooled OLS standard errors incorrect.
- We must:
 - Either correct the OLS SE, or
 - Use the GLS random effects estimator

Roadmap

Exercise 1

Exercise 4

Exercise 4: Rental Prices and Student Presence

The data for the years 1980 and 1990 include rental prices and other variables for college towns. The goal is to determine whether a stronger presence of students affects rental rates. The model is:

$$\log(\text{rent}_{it}) = \beta_0 + \delta_0 y 90_t + \beta_1 \log(\text{pop}_{it}) + \beta_2 \log(\text{avginc}_{it}) + \beta_3 \text{pctstu}_{it} + e_{it},$$

where:

- pop is city population,
- avginc is average income,
- pctstu is student population as a percentage of city population (during the school year).

Pooled OLS Estimation Results

You estimate the model with pooled OLS and obtain the following results:

Source	33	df	df MS			Number of obs	=	128
Model	12.1080112	4	3.02700	0281		F(4, 123) Prob > F	=	190.92
Residual	1.9501234	123	.015854	1662		R-squared	=	0.8613
Total	14.0581346	127	.110693974			Adj R-squared Root MSE		0.8568
lrent	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
у90	.2622267	.0347	632	7.54	9 0.000	.1934151		3310384
lpop	.0406863	.0225	154	1.81	0.073	0038815		0852541
lavginc	.5714461	.0530	981 1	10.76	0.000	.4663417		6765504
petstu	.0050436	.0010	192	4.95	0.000	.0030262		.007061
_cons	5688069	.5348	808 -	1.06	0.290	-1.627571		4899568

Figure: Pooled OLS Estimation Results for Rental Prices and Student Presence

Interpreting the Regression Results

- Almost all regressors are statistically significant.
- City population is borderline significant.
- However, population per se is not a strong driving factor:
 - The number of inhabitants affects rents only if land size is limited.
 - This constraint is not explicitly considered in the model.
- There is a clear omitted variable bias:
 - City size is not constant and may depend on the city itself.
 - Example: London and Coventry do not have the same size.
- This leads to the so-called heterogeneous bias.
- To address this issue:
 - A fixed effects model can be used if regressors are correlated with city-specific effects.
 - A random effects model can be used if regressors are uncorrelated with city-specific effects.

Pooled OLS Estimation Results

Now you estimate the model with fixed effect and obtain the following results:

corr(u_i, Xb)	0.1297			F(4,60) Prob > E	=	
lrent	Coef.	Std. Err.	ь	P> 6	[95% Conf.	Interval]
790	.3555219	.0365245	10.47	0.000	.3118615	. 9591813
lpop	.0722456	.0882426	0.82	0.417	104466	.2489571
laugina	.2099605	.0664771	4.66	0.000	.1769865	.4429246
potetu	.0112033	.0041319	2.71	0.009	.0029382	.0194684
_cons	1.409384	1.167238	1.21	0.292	9254994	2.744208
signa_u	.15905877					
sigma_e	.06372873					
rho	.0616755	(fraction o	of varian	nce due so	u_i)	
r test that al	l1 u_1=0:	r(63, 60) =	10.20	0	Prob > 1	r = 0.0000

Figure: FE Estimation Results for Rental Prices and Student Presence

Fixed Effects and Model Selection

- By fully acknowledging unobservable fixed effects, the impact of lpop disappears.
- From the output, we see that:

$$\operatorname{corr}(\alpha_i, x_{it}) = -0.129,$$

which is relatively small.

- Given this small correlation, it might be sensible to use a random effects model instead.
- However, determining the appropriate model is difficult without first implementing a Hausman test.